cs.AI updates on arXiv.org 09月30日
新型数据去除方法提升模型预测能力
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种新型数据去除方法,通过因子去相关和损失扰动增强深度预测模型。实验表明,该方法在分布变化的情况下仍能保持高预测准确性和鲁棒性。

arXiv:2509.23443v1 Announce Type: cross Abstract: The imperative of user privacy protection and regulatory compliance necessitates sensitive data removal in model training, yet this process often induces distributional shifts that undermine model performance-particularly in out-of-distribution (OOD) scenarios. We propose a novel data removal approach that enhances deep predictive models through factor decorrelation and loss perturbation. Our approach introduces: (1) a discriminative-preserving factor decorrelation module employing dynamic adaptive weight adjustment and iterative representation updating to reduce feature redundancy and minimize inter-feature correlations. (2) a smoothed data removal mechanism with loss perturbation that creates information-theoretic safeguards against data leakage during removal operations. Extensive experiments on five benchmark datasets show that our approach outperforms other baselines and consistently achieves high predictive accuracy and robustness even under significant distribution shifts. The results highlight its superior efficiency and adaptability in both in-distribution and out-of-distribution scenarios.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

数据去除 深度学习 模型预测
相关文章