cs.AI updates on arXiv.org 09月30日 12:04
PATCH:混合稀疏框架提升大语言模型性能
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为PATCH的混合稀疏框架,旨在解决现有大语言模型剪枝方法在部署时的高内存和计算成本问题。通过引入可学习的掩码选择机制,PATCH实现了从0%到50%的连续稀疏比,优化了模型质量和加速效果。

arXiv:2509.23410v1 Announce Type: cross Abstract: Large language models (LLMs) deliver impressive performance but incur prohibitive memory and compute costs at deployment. Model pruning is an effective way to reduce these overheads, yet existing approaches face challenges: unstructured sparsity, where nonzeros can appear anywhere, preserves accuracy but yields irregular access patterns that prevent GPU acceleration, while semi-structured 2:4 sparsity is hardware-friendly but enforces a rigid 50% pattern that degrades model quality. To bridge this gap, we introduce PATCH, a hybrid sparsity framework that enables a continuous sparsity ratio between 0% and 50%. PATCH partitions weight matrices into tiles, assigning each tile to be either dense or 2:4 sparse via a learnable mask selection mechanism. This design provides fine-grained control over accuracy-acceleration tradeoffs and supports non-uniform sparsity across layers, leading to superior overall quality. Across models from 0.5B to 8B parameters, PATCH consistently narrows the gap to dense accuracy while delivering practical speedups. For instance, on LLaMA-2 7B with an A6000 GPU, PATCH achieves 1.18x-1.38x end-to-end speedup over dense baselines while improving accuracy by 0.37%-2.96% compared to the state-of-the-art 2:4 pruning method, MaskLLM.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大语言模型 模型剪枝 稀疏框架 PATCH 性能提升
相关文章