cs.AI updates on arXiv.org 09月30日
MELCOT:矩阵回归新模型
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出MELCOT模型,结合边际估计与学习成本最优传输,解决高维矩阵回归问题,实验证明其性能优于现有方法。

arXiv:2509.23315v1 Announce Type: cross Abstract: Regression is essential across many domains but remains challenging in high-dimensional settings, where existing methods often lose spatial structure or demand heavy storage. In this work, we address the problem of matrix-valued regression, where each sample is naturally represented as a matrix. We propose MELCOT, a hybrid model that integrates a classical machine learning-based Marginal Estimation (ME) block with a deep learning-based Learnable-Cost Optimal Transport (LCOT) block. The ME block estimates data marginals to preserve spatial information, while the LCOT block learns complex global features. This design enables MELCOT to inherit the strengths of both classical and deep learning methods. Extensive experiments across diverse datasets and domains demonstrate that MELCOT consistently outperforms all baselines while remaining highly efficient.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

矩阵回归 机器学习 深度学习 最优传输 高维数据
相关文章