cs.AI updates on arXiv.org 09月30日
NODE-FDM:基于神经常微分方程的飞机轨迹预测模型
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出NODE-FDM模型,结合解析动力学与数据驱动,在飞行轨迹预测方面超越现有模型,尤其改善下降阶段准确性。分析表明,该模型在高度、速度和质量动力学方面均有显著提升。

arXiv:2509.23307v1 Announce Type: cross Abstract: Accurate aircraft trajectory prediction is critical for air traffic management, airline operations, and environmental assessment. This paper introduces NODE-FDM, a Neural Ordinary Differential Equations-based Flight Dynamics Model trained on Quick Access Recorder (QAR) data. By combining analytical kinematic relations with data-driven components, NODE-FDM achieves a more accurate reproduction of recorded trajectories than state-of-the-art models such as a BADA-based trajectory generation methodology (BADA4 performance model combined with trajectory control routines), particularly in the descent phase of the flight. The analysis demonstrates marked improvements across altitude, speed, and mass dynamics. Despite current limitations, including limited physical constraints and the limited availability of QAR data, the results demonstrate the potential of physics-informed neural ordinary differential equations as a high-fidelity, data-driven approach to aircraft performance modelling. Future work will extend the framework to incorporate a full modelling of the lateral dynamics of the aircraft.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

飞行轨迹预测 神经常微分方程 NODE-FDM 飞行动力学模型 航空交通管理
相关文章