cs.AI updates on arXiv.org 09月30日 12:04
A2D:针对dLLM的任意顺序防御策略
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为A2D的防御方法,用于应对扩散大型语言模型(dLLMs)在任意顺序生成时的潜在攻击风险。该方法通过在随机掩码下直接在标记级别对dLLMs进行对齐,使其在有害内容出现时发出[EOS]拒绝信号,从而实现高效的安全监控。

arXiv:2509.23286v1 Announce Type: cross Abstract: Diffusion large language models (dLLMs) enable any-order generation, but this flexibility enlarges the attack surface: harmful spans may appear at arbitrary positions, and template-based prefilling attacks such as DIJA bypass response-level refusals. We introduce A2D (Any-Order, Any-Step Defense), a token-level alignment method that aligns dLLMs to emit an [EOS] refusal signal whenever harmful content arises. By aligning safety directly at the token-level under randomized masking, A2D achieves robustness to both any-decoding-order and any-step prefilling attacks under various conditions. It also enables real-time monitoring: dLLMs may begin a response but automatically terminate if unsafe continuation emerges. On safety benchmarks, A2D consistently prevents the generation of harmful outputs, slashing DIJA success rates from over 80% to near-zero (1.3% on LLaDA-8B-Instruct, 0.0% on Dream-v0-Instruct-7B), and thresholded [EOS] probabilities allow early rejection, yielding up to 19.3x faster safe termination.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

dLLMs 防御策略 安全监控 A2D 任意顺序
相关文章