cs.AI updates on arXiv.org 09月30日
Vid-Freeze:针对I2V生成模型的新型防御策略
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出Vid-Freeze,一种针对图像到视频(I2V)生成模型的新型防御方法,通过添加精心设计的对抗性扰动来破坏运动合成,有效阻止恶意内容创建。

arXiv:2509.23279v1 Announce Type: cross Abstract: The rapid progress of image-to-video (I2V) generation models has introduced significant risks, enabling video synthesis from static images and facilitating deceptive or malicious content creation. While prior defenses such as I2VGuard attempt to immunize images, effective and principled protection to block motion remains underexplored. In this work, we introduce Vid-Freeze - a novel attention-suppressing adversarial attack that adds carefully crafted adversarial perturbations to images. Our method explicitly targets the attention mechanism of I2V models, completely disrupting motion synthesis while preserving semantic fidelity of the input image. The resulting immunized images generate stand-still or near-static videos, effectively blocking malicious content creation. Our experiments demonstrate the impressive protection provided by the proposed approach, highlighting the importance of attention attacks as a promising direction for robust and proactive defenses against misuse of I2V generation models.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

I2V生成模型 对抗性攻击 视频合成 内容安全
相关文章