cs.AI updates on arXiv.org 09月30日 12:04
印度季风降雨预测的多模态深度学习框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种基于卫星和地球观测数据的多模态深度学习框架,用于高分辨率降雨分类,以解决印度季风降雨预测的挑战。该框架在印度五个州的1公里分辨率数据集上进行了验证,并取得了优于现有方法的预测效果。

arXiv:2509.23267v1 Announce Type: cross Abstract: Accurate monsoon rainfall prediction is vital for India's agriculture, water management, and climate risk planning, yet remains challenging due to sparse ground observations and complex regional variability. We present a multimodal deep learning framework for high-resolution precipitation classification that leverages satellite and Earth observation data. Unlike previous rainfall prediction models based on coarse 5-50 km grids, we curate a new 1 km resolution dataset for five Indian states, integrating seven key geospatial modalities: land surface temperature, vegetation (NDVI), soil moisture, relative humidity, wind speed, elevation, and land use, covering the June-September 2024 monsoon season. Our approach uses an attention-guided U-Net architecture to capture spatial patterns and temporal dependencies across modalities, combined with focal and dice loss functions to handle rainfall class imbalance defined by the India Meteorological Department (IMD). Experiments demonstrate that our multimodal framework consistently outperforms unimodal baselines and existing deep learning methods, especially in extreme rainfall categories. This work contributes a scalable framework, benchmark dataset, and state-of-the-art results for regional monsoon forecasting, climate resilience, and geospatial AI applications in India.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

印度季风 多模态深度学习 降雨预测 卫星数据 地球观测
相关文章