cs.AI updates on arXiv.org 09月30日
Patch Rebirth Inversion:提高模型反演效率的新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出Patch Rebirth Inversion(PRI),一种在模型反演过程中逐步分离重要图像块,构建稀疏合成图像的方法,以平衡知识迁移中的类无关和类特定知识。

arXiv:2509.23235v1 Announce Type: cross Abstract: Model inversion is a widely adopted technique in data-free learning that reconstructs synthetic inputs from a pretrained model through iterative optimization, without access to original training data. Unfortunately, its application to state-of-the-art Vision Transformers (ViTs) poses a major computational challenge, due to their expensive self-attention mechanisms. To address this, Sparse Model Inversion (SMI) was proposed to improve efficiency by pruning and discarding seemingly unimportant patches, which were even claimed to be obstacles to knowledge transfer. However, our empirical findings suggest the opposite: even randomly selected patches can eventually acquire transferable knowledge through continued inversion. This reveals that discarding any prematurely inverted patches is inefficient, as it suppresses the extraction of class-agnostic features essential for knowledge transfer, along with class-specific features. In this paper, we propose Patch Rebirth Inversion (PRI), a novel approach that incrementally detaches the most important patches during the inversion process to construct sparse synthetic images, while allowing the remaining patches to continue evolving for future selection. This progressive strategy not only improves efficiency, but also encourages initially less informative patches to gradually accumulate more class-relevant knowledge, a phenomenon we refer to as the Re-Birth effect, thereby effectively balancing class-agnostic and class-specific knowledge. Experimental results show that PRI achieves up to 10x faster inversion than standard Dense Model Inversion (DMI) and 2x faster than SMI, while consistently outperforming SMI in accuracy and matching the performance of DMI.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

模型反演 知识迁移 图像块分离
相关文章