cs.AI updates on arXiv.org 09月30日
扩展DAM至概率分布及其在记忆增强学习中的应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出将密集关联记忆(DAM)模型扩展至概率分布,特别是在Bures-Wasserstein高斯密度类下,并证明了其指数存储容量和Wasserstein扰动下的检索保证。该模型在记忆增强学习中实现分布存储和检索,连接经典DAM与现代生成建模。

arXiv:2509.23162v1 Announce Type: cross Abstract: Dense associative memories (DAMs) store and retrieve patterns via energy-functional fixed points, but existing models are limited to vector representations. We extend DAMs to probability distributions equipped with the 2-Wasserstein distance, focusing mainly on the Bures-Wasserstein class of Gaussian densities. Our framework defines a log-sum-exp energy over stored distributions and a retrieval dynamics aggregating optimal transport maps in a Gibbs-weighted manner. Stationary points correspond to self-consistent Wasserstein barycenters, generalizing classical DAM fixed points. We prove exponential storage capacity, provide quantitative retrieval guarantees under Wasserstein perturbations, and validate the model on synthetic and real-world distributional tasks. This work elevates associative memory from vectors to full distributions, bridging classical DAMs with modern generative modeling and enabling distributional storage and retrieval in memory-augmented learning.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

密集关联记忆 概率分布 记忆增强学习 生成建模 Wasserstein距离
相关文章