cs.AI updates on arXiv.org 09月30日 12:03
预训练中显式诱导电路对ICL的影响研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文通过实验验证了在预训练过程中显式使用诱导电路对情境学习(ICL)的影响,发现并非早期激活诱导电路就能直接提升ICL效果,同时提出了Bi-Induct轻量级课程,通过实验证明了其在ICL上的效果。

arXiv:2509.22947v1 Announce Type: cross Abstract: Does explicitly exercising the induction circuit during pretraining improve in-context learning (ICL), or is natural text sufficient when compute is held constant (iso-FLOPs)? To test whether targeted synthetic data can accelerate induction-head emergence and enhance ICL, we introduce Bi-Induct, a lightweight curriculum that injects forward-copy (Induction), backward-copy (Anti), or a balanced mix into the pretraining stream. We train models from 0.13B to 1B parameters under iso-FLOPs, evaluating (i) few-shot ICL benchmarks, (ii) head-level telemetry, and (iii) held-out language modeling perplexity. Our findings challenge the assumption that early induction circuit activation directly improves ICL. While Bi-Induct accelerates induction-head emergence at small scales, this does not consistently yield stronger generalization. On standard LM benchmarks, Bi-Induct matches natural-only training; on function-style ICL probes, the 1B natural-only performs best. Stress tests (e.g., label permutation, HITS@1 vs. HITS@3, 1 vs. 10 shots) preserve these trends. Telemetry shows larger natural-only models develop broader, earlier induction heads without explicit induction patterns. Anti-induction data fails to elicit meaningful activation. Perplexity penalties from synthetic data shrink with scale, suggesting larger models can absorb non-natural patterns with minimal cost. Crucially, ablating the top 2% of induction heads degrades ICL more than random ablations, especially for natural-only models, indicating more centralized, load-bearing circuits. Bi-Induct variants exhibit more redundant induction activity, implying different circuit utilization. Overall, inducing activation is not sufficient: ICL gains depend on these circuits becoming functionally necessary. These results underscore mechanism-aware pretraining diagnostics and data mixtures that foster load-bearing, not merely present, structure.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

预训练 情境学习 诱导电路 ICL Bi-Induct
相关文章