cs.AI updates on arXiv.org 09月30日
水电站声学异常检测方法比较分析
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文针对水电站中声学异常检测问题,对比分析了基于声学信号的特征提取和机器学习模型,以提升水电站的预测性维护。研究通过实际数据集测试了LSTM AE、K-Means和OC-SVM三种模型,发现OC-SVM在准确性和训练时间上表现最佳。

arXiv:2509.22881v1 Announce Type: cross Abstract: In the context of industrial factories and energy producers, unplanned outages are highly costly and difficult to service. However, existing acoustic-anomaly detection studies largely rely on generic industrial or synthetic datasets, with few focused on hydropower plants due to limited access. This paper presents a comparative analysis of acoustic-based anomaly detection methods, as a way to improve predictive maintenance in hydropower plants. We address key challenges in the acoustic preprocessing under highly noisy conditions before extracting time- and frequency-domain features. Then, we benchmark three machine learning models: LSTM AE, K-Means, and OC-SVM, which are tested on two real-world datasets from the Rodundwerk II pumped-storage plant in Austria, one with induced anomalies and one with real-world conditions. The One-Class SVM achieved the best trade-off of accuracy (ROC AUC 0.966-0.998) and minimal training time, while the LSTM autoencoder delivered strong detection (ROC AUC 0.889-0.997) at the expense of higher computational cost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

水电站 声学异常检测 机器学习 预测性维护 OC-SVM
相关文章