cs.AI updates on arXiv.org 09月30日
轻量级Wi-Fi定位框架提升室内定位准确度
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种轻量级Wi-Fi定位框架,通过自动化RSS数据收集和监督学习算法,提高室内定位的准确度和泛化能力,同时保护用户隐私。

arXiv:2509.22869v1 Announce Type: cross Abstract: Wi-Fi-based positioning promises a scalable and privacy-preserving solution for location-based services in indoor environments such as malls, airports, and campuses. RSS-based methods are widely deployable as RSS data is available on all Wi-Fi-capable devices, but RSS is highly sensitive to multipath, channel variations, and receiver characteristics. While supervised learning methods offer improved robustness, they require large amounts of labeled data, which is often costly to obtain. We introduce a lightweight framework that solves this by automating high-resolution synchronized RSS-location data collection using a short, camera-assisted calibration phase. An overhead camera is calibrated only once with ArUco markers and then tracks a device collecting RSS data from broadcast packets of nearby access points across Wi-Fi channels. The resulting (x, y, RSS) dataset is used to automatically train mobile-deployable localization algorithms, avoiding the privacy concerns of continuous video monitoring. We quantify the accuracy limits of such vision-assisted RSS data collection under key factors such as tracking precision and label synchronization. Using the collected experimental data, we benchmark traditional and supervised learning approaches under varying signal conditions and device types, demonstrating improved accuracy and generalization, validating the utility of the proposed framework for practical use. All code, tools, and datasets are released as open source.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Wi-Fi定位 室内定位 机器学习
相关文章