cs.AI updates on arXiv.org 09月30日
OLTR算法对抗攻击新框架及策略
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种针对OLTR算法的攻击框架,旨在提升目标项目在推荐列表中的位置,同时导致学习算法产生线性遗憾。针对两种OLTR算法,提出 CascadeOFA 和 PBMOFA 攻击策略,并证明其成功所需的操作次数仅为 O(log T)。

arXiv:2509.22855v1 Announce Type: cross Abstract: Online learning to rank (OLTR) plays a critical role in information retrieval and machine learning systems, with a wide range of applications in search engines and content recommenders. However, despite their extensive adoption, the susceptibility of OLTR algorithms to coordinated adversarial attacks remains poorly understood. In this work, we present a novel framework for attacking some of the widely used OLTR algorithms. Our framework is designed to promote a set of target items so that they appear in the list of top-K recommendations for T - o(T) rounds, while simultaneously inducing linear regret in the learning algorithm. We propose two novel attack strategies: CascadeOFA for CascadeUCB1 and PBMOFA for PBM-UCB . We provide theoretical guarantees showing that both strategies require only O(log T) manipulations to succeed. Additionally, we supplement our theoretical analysis with empirical results on real-world data.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

OLTR算法 对抗攻击 攻击策略 推荐系统 信息检索
相关文章