cs.AI updates on arXiv.org 09月30日
表格数据对抗攻击研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种针对表格数据的黑盒决策型对抗攻击,结合梯度无关方向估计与迭代边界搜索,在最小Oracle访问下高效导航离散和连续特征空间。实验证明,该方法在多种模型上均能成功攻击测试集,成功率达到90%以上,强调表格模型对抗扰动的重要性。

arXiv:2509.22850v1 Announce Type: cross Abstract: Adversarial robustness in structured data remains an underexplored frontier compared to vision and language domains. In this work, we introduce a novel black-box, decision-based adversarial attack tailored for tabular data. Our approach combines gradient-free direction estimation with an iterative boundary search, enabling efficient navigation of discrete and continuous feature spaces under minimal oracle access. Extensive experiments demonstrate that our method successfully compromises nearly the entire test set across diverse models, ranging from classical machine learning classifiers to large language model (LLM)-based pipelines. Remarkably, the attack achieves success rates consistently above 90%, while requiring only a small number of queries per instance. These results highlight the critical vulnerability of tabular models to adversarial perturbations, underscoring the urgent need for stronger defenses in real-world decision-making systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

表格数据 对抗攻击 黑盒攻击 机器学习 安全防御
相关文章