cs.AI updates on arXiv.org 09月30日
隐私保护下的工具变量回归新算法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究在差分隐私约束下的工具变量回归(IVaR),提出一种注入噪声的梯度下降算法,确保$ ho$-零集中差分隐私,并分析其有限样本收敛率,验证了算法在保持隐私的同时实现一致性。

arXiv:2509.22794v1 Announce Type: cross Abstract: We study instrumental variable regression (IVaR) under differential privacy constraints. Classical IVaR methods (like two-stage least squares regression) rely on solving moment equations that directly use sensitive covariates and instruments, creating significant risks of privacy leakage and posing challenges in designing algorithms that are both statistically efficient and differentially private. We propose a noisy two-state gradient descent algorithm that ensures $\rho$-zero-concentrated differential privacy by injecting carefully calibrated noise into the gradient updates. Our analysis establishes finite-sample convergence rates for the proposed method, showing that the algorithm achieves consistency while preserving privacy. In particular, we derive precise bounds quantifying the trade-off among privacy parameters, sample size, and iteration-complexity. To the best of our knowledge, this is the first work to provide both privacy guarantees and provable convergence rates for instrumental variable regression in linear models. We further validate our theoretical findings with experiments on both synthetic and real datasets, demonstrating that our method offers practical accuracy-privacy trade-offs.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

工具变量回归 差分隐私 梯度下降 隐私保护 算法
相关文章