cs.AI updates on arXiv.org 09月30日
AI辅助评估量子加密协议安全风险
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种评估量子加密协议中漏洞的结构化方法,重点在于BB84量子密钥分发方法和美国国家标准与技术研究院(NIST)批准的抗量子算法。通过整合AI驱动的红队行动、自动渗透测试和实时异常检测,该研究建立了一个评估和减轻量子网络安全风险的框架。研究表明,AI能够有效地模拟对抗性攻击,探测加密实现中的弱点,并通过迭代反馈来优化安全机制。自动化利用模拟和协议模糊测试提供了一种可扩展的方法来识别潜在漏洞,而对抗性机器学习技术突显了AI增强的加密过程中新的攻击面。本项研究为加强量子安全提供了全面的方法,并为将AI驱动的网络安全实践整合到不断发展的量子领域中奠定了基础。

arXiv:2509.22757v1 Announce Type: cross Abstract: This study presents a structured approach to evaluating vulnerabilities within quantum cryptographic protocols, focusing on the BB84 quantum key distribution method and National Institute of Standards and Technology (NIST) approved quantum-resistant algorithms. By integrating AI-driven red teaming, automated penetration testing, and real-time anomaly detection, the research develops a framework for assessing and mitigating security risks in quantum networks. The findings demonstrate that AI can be effectively used to simulate adversarial attacks, probe weaknesses in cryptographic implementations, and refine security mechanisms through iterative feedback. The use of automated exploit simulations and protocol fuzzing provides a scalable means of identifying latent vulnerabilities, while adversarial machine learning techniques highlight novel attack surfaces within AI-enhanced cryptographic processes. This study offers a comprehensive methodology for strengthening quantum security and provides a foundation for integrating AI-driven cybersecurity practices into the evolving quantum landscape.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

量子加密 AI安全评估 量子网络安全
相关文章