cs.AI updates on arXiv.org 09月30日 12:03
LLMs在残障领域应用评估:AccessEval基准
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为AccessEval的基准,用于评估21种LLMs在6个实际领域和9种残障类型中的表现,发现LLMs在处理残障相关查询时存在偏见,影响实际应用。

arXiv:2509.22703v1 Announce Type: cross Abstract: Large Language Models (LLMs) are increasingly deployed across diverse domains but often exhibit disparities in how they handle real-life queries. To systematically investigate these effects within various disability contexts, we introduce \textbf{AccessEval (Accessibility Evaluation)}, a benchmark evaluating 21 closed- and open-source LLMs across 6 real-world domains and 9 disability types using paired Neutral and Disability-Aware Queries. We evaluated model outputs with metrics for sentiment, social perception, and factual accuracy. Our analysis reveals that responses to disability-aware queries tend to have a more negative tone, increased stereotyping, and higher factual error compared to neutral queries. These effects show notable variation by domain and disability type, with disabilities affecting hearing, speech, and mobility disproportionately impacted. These disparities reflect persistent forms of ableism embedded in model behavior. By examining model performance in real-world decision-making contexts, we better illuminate how such biases can translate into tangible harms for disabled users. This framing helps bridges the gap between technical evaluation and user impact, reinforcing importance of bias mitigation in day-to-day applications. Our dataset is publicly available at: https://huggingface.co/datasets/Srikant86/AccessEval

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLMs Accessibility Evaluation Disability Bias Model Performance
相关文章