cs.AI updates on arXiv.org 09月30日 12:02
CWT-YOLO框架在旋转机械故障诊断中的应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于YOLO的旋转机械故障诊断框架,利用连续小波变换生成时间-频率谱图,并通过YOLOv9、v10、v11模型进行故障分类,在三个基准数据集上实现高准确率和泛化能力。

arXiv:2509.03070v2 Announce Type: cross Abstract: This letter proposes a YOLO-based framework for spatial bearing fault diagnosis using time-frequency spectrograms derived from continuous wavelet transform (CWT). One-dimensional vibration signals are first transformed into time-frequency spectrograms using Morlet wavelets to capture transient fault signatures. These spectrograms are then processed by YOLOv9, v10, and v11 models to classify fault types. Evaluated on three benchmark datasets, including Case Western Reserve University (CWRU), Paderborn University (PU), and Intelligent Maintenance System (IMS), the proposed CWT-YOLO pipeline achieves significantly higher accuracy and generalizability than the baseline MCNN-LSTM model. Notably, YOLOv11 reaches mAP scores of 99.4% (CWRU), 97.8% (PU), and 99.5% (IMS). In addition, its region-aware detection mechanism enables direct visualization of fault locations in spectrograms, offering a practical solution for condition monitoring in rotating machinery.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

旋转机械 故障诊断 连续小波变换 YOLO 时间-频率谱图
相关文章