cs.AI updates on arXiv.org 09月30日
RLHI:从自然交互中学习提升对话模型
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为RLHI的新方法,通过直接从用户自然对话中学习,提升对话模型性能。包括用户引导重写和基于用户奖励两种方法,显著提高个性化定制和指令遵循能力。

arXiv:2509.25137v1 Announce Type: new Abstract: We posit that to achieve continual model improvement and multifaceted alignment, future models must learn from natural human interaction. Current conversational models are aligned using pre-annotated, expert-generated human feedback. In this work, we introduce Reinforcement Learning from Human Interaction (RLHI), a paradigm that learns directly from in-the-wild user conversations. We develop two complementary methods: (1) RLHI with User-Guided Rewrites, which revises unsatisfactory model outputs based on users' natural-language follow-up responses, (2) RLHI with User-Based Rewards, which learns via a reward model conditioned on knowledge of the user's long-term interaction history (termed persona). Together, these methods link long-term user personas to turn-level preferences via persona-conditioned preference optimization. Trained on conversations derived from WildChat, both RLHI variants outperform strong baselines in personalization and instruction-following, and similar feedback enhances performance on reasoning benchmarks. These results suggest organic human interaction offers scalable, effective supervision for personalized alignment.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

RLHI 对话模型 自然交互 个性化定制 指令遵循
相关文章