cs.AI updates on arXiv.org 09月30日
SciExplorer:自动化科学发现的新工具
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为SciExplorer的机器学习代理,通过利用大型语言模型的工具使用能力,实现对未知系统的自由探索,并在机械动力学、波演化和量子多体物理等领域进行了测试,展示了其在自动化科学发现中的潜力。

arXiv:2509.24978v1 Announce Type: new Abstract: The process of scientific discovery relies on an interplay of observations, analysis, and hypothesis generation. Machine learning is increasingly being adopted to address individual aspects of this process. However, it remains an open challenge to fully automate the open-ended, heuristic, iterative loop required to discover the laws of an unknown system by exploring it through experiments and analysis, without tailoring the approach to the specifics of a given task. Here, we introduce SciExplorer, an agent that leverages large language model tool-use capabilities to enable free-form exploration of systems without any domain-specific blueprints, and apply it to the exploration of physical systems that are initially unknown to the agent. We test SciExplorer on a broad set of models spanning mechanical dynamical systems, wave evolution, and quantum many-body physics. Despite using a minimal set of tools, primarily based on code execution, we observe impressive performance on tasks such as recovering equations of motion from observed dynamics and inferring Hamiltonians from expectation values. The demonstrated effectiveness of this setup opens the door towards similar scientific exploration in other domains, without the need for finetuning or task-specific instructions.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

SciExplorer 机器学习 科学发现 物理系统 自动化
相关文章