cs.AI updates on arXiv.org 09月30日
SQuID方法在心理测量中的应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为SQuID的新方法,通过神经网络嵌入从心理测量问卷中恢复潜在维度,并通过实验验证了其在心理测量中的有效性,为心理和社会科学研究提供了新的方法。

arXiv:2509.24906v1 Announce Type: new Abstract: This study introduces "Survey and Questionnaire Item Embeddings Differentials" (SQuID), a novel methodological approach that enables neural network embeddings to effectively recover latent dimensions from psychometric survey items. We demonstrate that embeddings derived from large language models, when processed with SQuID, can recover the structure of human values obtained from human rater judgments on the Revised Portrait Value Questionnaire (PVQ-RR). Our experimental validation compares multiple embedding models across a number of evaluation metrics. Unlike previous approaches, SQuID successfully addresses the challenge of obtaining negative correlations between dimensions without requiring domain-specific fine-tuning. Quantitative analysis reveals that our embedding-based approach explains 55% of variance in dimension-dimension similarities compared to human data. Multidimensional scaling configurations from both types of data show fair factor congruence coefficients and largely follow the underlying theory. These results demonstrate that semantic embeddings can effectively replicate psychometric structures previously established through extensive human surveys. The approach offers substantial advantages in cost, scalability and flexibility while maintaining comparable quality to traditional methods. Our findings have significant implications for psychometrics and social science research, providing a complementary methodology that could expand the scope of human behavior and experience represented in measurement tools.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

SQuID 心理测量 神经网络嵌入 心理社会学
相关文章