cs.AI updates on arXiv.org 09月30日 12:02
SFTG框架提升EEG视觉解码性能
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于SFTG框架的EEG视觉解码新方法,通过结合空间-功能感知和图原型对比学习,显著提高了基于EEG的视觉解码性能。

arXiv:2509.24761v1 Announce Type: new Abstract: Decoding visual neural representations from Electroencephalography (EEG) signals remains a formidable challenge due to their high-dimensional, noisy, and non-Euclidean nature. In this work, we propose a Spatial-Functional Awareness Transformer-based Graph Archetype Contrastive Learning (SFTG) framework to enhance EEG-based visual decoding. Specifically, we introduce the EEG Graph Transformer (EGT), a novel graph-based neural architecture that simultaneously encodes spatial brain connectivity and temporal neural dynamics. To mitigate high intra-subject variability, we propose Graph Archetype Contrastive Learning (GAC), which learns subject-specific EEG graph archetypes to improve feature consistency and class separability. Furthermore, we conduct comprehensive subject-dependent and subject-independent evaluations on the Things-EEG dataset, demonstrating that our approach significantly outperforms prior state-of-the-art EEG decoding methods.The results underscore the transformative potential of integrating graph-based learning with contrastive objectives to enhance EEG-based brain decoding, paving the way for more generalizable and robust neural representations.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

EEG 视觉解码 图学习 对比学习 SFTG框架
相关文章