arXiv:2506.23508v2 Announce Type: replace-cross Abstract: Post-training algorithms such as Supervised Fine-Tuning (SFT) and Reinforcement Fine-Tuning (RFT) are widely used to adapt multimodal large language models to downstream tasks. While effective at task adaptation, their impact on prior knowledge remains unclear. In this paper, we introduce jigsaw puzzles as a novel task absent from existing pretraining corpora and systematically study the behavior of SFT and RFT on open-source multimodal model, Qwen2.5-VL series. Our experiments reveal a sharp trade-off: SFT enables rapid task acquisition but leads to catastrophic forgetting, whereas RFT learns more slowly but maintains prior knowledge. We study this phenomenon through learning dynamics by examining both the magnitude and direction of how training data influence prior knowledge. Our analysis shows that RFT mainly reinforces correct samples naturally aligned with the base model's probability landscape, leading to weaker interference with prior knowledge. Moreover, training on RFT-simulated rollouts, which exert a small magnitude of influence and are well aligned in direction to prior knowledge, allows SFT to preserve prior knowledge better while rapidly learning new tasks. These findings suggest that distribution of training data, rather than algorithmic differences, plays a central role in forgetting, and highlight RFT's potential for stable continual learning in multimodal large language models.
