cs.AI updates on arXiv.org 09月29日
高效不确定性估计方法应用于回归任务
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于成对距离估计器(PaiDEs)的回归任务集成模型不确定性估计的新方法,通过成对距离建立熵的界限,提升贝叶斯主动学习(BALD)性能,实验验证了其在高维回归任务中的优越性。

arXiv:2308.13498v4 Announce Type: replace-cross Abstract: This work introduces an efficient novel approach for epistemic uncertainty estimation for ensemble models for regression tasks using pairwise-distance estimators (PaiDEs). Utilizing the pairwise-distance between model components, these estimators establish bounds on entropy. We leverage this capability to enhance the performance of Bayesian Active Learning by Disagreement (BALD). Notably, unlike sample-based Monte Carlo estimators, PaiDEs exhibit a remarkable capability to estimate epistemic uncertainty at speeds up to 100 times faster while covering a significantly larger number of inputs at once and demonstrating superior performance in higher dimensions. To validate our approach, we conducted a varied series of regression experiments on commonly used benchmarks: 1D sinusoidal data, $\textit{Pendulum}$, $\textit{Hopper}$, $\textit{Ant}$ and $\textit{Humanoid}$. For each experimental setting, an active learning framework was applied to demonstrate the advantages of PaiDEs for epistemic uncertainty estimation. We compare our approach to existing active learning methods and find that our approach outperforms on high-dimensional regression tasks.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

不确定性估计 回归任务 集成模型 PaiDEs 贝叶斯主动学习
相关文章