cs.AI updates on arXiv.org 09月29日
神经与深度神经网络学习原理相似
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章揭示了生物神经和深度神经网络在学习和活动上的相似性,并探讨了其背后的统一理论框架,为提升神经网络性能提供了蓝图。

arXiv:2509.22649v1 Announce Type: cross Abstract: Deep neural networks and brains both learn and share superficial similarities: processing nodes are likened to neurons and adjustable weights are likened to modifiable synapses. But can a unified theoretical framework be found to underlie them both? Here we show that the equations used to describe neuronal avalanches in living brains can also be applied to cascades of activity in deep neural networks. These equations are derived from non-equilibrium statistical physics and show that deep neural networks learn best when poised between absorbing and active phases. Because these networks are strongly driven by inputs, however, they do not operate at a true critical point but within a quasi-critical regime -- one that still approximately satisfies crackling noise scaling relations. By training networks with different initializations, we show that maximal susceptibility is a more reliable predictor of learning than proximity to the critical point itself. This provides a blueprint for engineering improved network performance. Finally, using finite-size scaling we identify distinct universality classes, including Barkhausen noise and directed percolation. This theoretical framework demonstrates that universal features are shared by both biological and artificial neural networks.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度学习 神经网络 统计物理
相关文章