cs.AI updates on arXiv.org 09月29日 12:16
MS生物标志物发现:结合xAI与DEA的新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本研究提出一种基于机器学习的MS生物标志物发现方法,整合PBMC微阵列数据集,结合xAI和DEA,揭示了潜在生物标志物及其与MS相关通路的关系。

arXiv:2509.22484v1 Announce Type: cross Abstract: We present a machine learning pipeline for biomarker discovery in Multiple Sclerosis (MS), integrating eight publicly available microarray datasets from Peripheral Blood Mononuclear Cells (PBMC). After robust preprocessing we trained an XGBoost classifier optimized via Bayesian search. SHapley Additive exPlanations (SHAP) were used to identify key features for model prediction, indicating thus possible biomarkers. These were compared with genes identified through classical Differential Expression Analysis (DEA). Our comparison revealed both overlapping and unique biomarkers between SHAP and DEA, suggesting complementary strengths. Enrichment analysis confirmed the biological relevance of SHAP-selected genes, linking them to pathways such as sphingolipid signaling, Th1/Th2/Th17 cell differentiation, and Epstein-Barr virus infection all known to be associated with MS. This study highlights the value of combining explainable AI (xAI) with traditional statistical methods to gain deeper insights into disease mechanism.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

MS生物标志物 机器学习 xAI DEA 生物信息学
相关文章