cs.AI updates on arXiv.org 09月29日
多中心数据集下的3D nnUNet图像翻译研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出基于多中心SynthRAD2025数据集的3D nnUNet图像翻译方法,通过引入残差网络和Anatomical Feature-Prioritized (AFP)损失,提高了图像重建的准确性和解剖结构的一致性。

arXiv:2509.22394v1 Announce Type: cross Abstract: We present a patch-based 3D nnUNet adaptation for MR to CT and CBCT to CT image translation using the multicenter SynthRAD2025 dataset, covering head and neck (HN), thorax (TH), and abdomen (AB) regions. Our approach leverages two main network configurations: a standard UNet and a residual UNet, both adapted from nnUNet for image synthesis. The Anatomical Feature-Prioritized (AFP) loss was introduced, which compares multilayer features extracted from a compact segmentation network trained on TotalSegmentator labels, enhancing reconstruction of clinically relevant structures. Input volumes were normalized per-case using zscore normalization for MRIs, and clipping plus dataset level zscore normalization for CBCT and CT. Training used 3D patches tailored to each anatomical region without additional data augmentation. Models were trained for 1000 and 1500 epochs, with AFP fine-tuning performed for 500 epochs using a combined L1+AFP objective. During inference, overlapping patches were aggregated via mean averaging with step size of 0.3, and postprocessing included reverse zscore normalization. Both network configurations were applied across all regions, allowing consistent model design while capturing local adaptations through residual learning and AFP loss. Qualitative and quantitative evaluation revealed that residual networks combined with AFP yielded sharper reconstructions and improved anatomical fidelity, particularly for bone structures in MR to CT and lesions in CBCT to CT, while L1only networks achieved slightly better intensity-based metrics. This methodology provides a stable solution for cross modality medical image synthesis, demonstrating the effectiveness of combining the automatic nnUNet pipeline with residual learning and anatomically guided feature losses.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

3D nnUNet 图像翻译 多中心数据集 残差网络 Anatomical Feature-Prioritized (AFP)损失
相关文章