cs.AI updates on arXiv.org 09月29日 12:16
HiGS:提升图像生成质量的新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为HiGS的新型采样技术,通过结合历史预测提高图像生成质量,实现高效且细节丰富的图像生成。

arXiv:2509.22300v1 Announce Type: cross Abstract: While diffusion models have made remarkable progress in image generation, their outputs can still appear unrealistic and lack fine details, especially when using fewer number of neural function evaluations (NFEs) or lower guidance scales. To address this issue, we propose a novel momentum-based sampling technique, termed history-guided sampling (HiGS), which enhances quality and efficiency of diffusion sampling by integrating recent model predictions into each inference step. Specifically, HiGS leverages the difference between the current prediction and a weighted average of past predictions to steer the sampling process toward more realistic outputs with better details and structure. Our approach introduces practically no additional computation and integrates seamlessly into existing diffusion frameworks, requiring neither extra training nor fine-tuning. Extensive experiments show that HiGS consistently improves image quality across diverse models and architectures and under varying sampling budgets and guidance scales. Moreover, using a pretrained SiT model, HiGS achieves a new state-of-the-art FID of 1.61 for unguided ImageNet generation at 256$\times$256 with only 30 sampling steps (instead of the standard 250). We thus present HiGS as a plug-and-play enhancement to standard diffusion sampling that enables faster generation with higher fidelity.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

图像生成 扩散模型 采样技术 HiGS
相关文章