cs.AI updates on arXiv.org 09月29日
SFMSE:语音增强中的高效流匹配模型
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为SFMSE的语音增强模型,利用流匹配技术实现高效降噪,并通过单步训练实现实时处理,为低延迟语音增强提供了一种新方案。

arXiv:2509.21522v1 Announce Type: cross Abstract: Diffusion-based generative models have achieved state-of-the-art performance for perceptual quality in speech enhancement (SE). However, their iterative nature requires numerous Neural Function Evaluations (NFEs), posing a challenge for real-time applications. On the contrary, flow matching offers a more efficient alternative by learning a direct vector field, enabling high-quality synthesis in just a few steps using deterministic ordinary differential equation~(ODE) solvers. We thus introduce Shortcut Flow Matching for Speech Enhancement (SFMSE), a novel approach that trains a single, step-invariant model. By conditioning the velocity field on the target time step during a one-stage training process, SFMSE can perform single, few, or multi-step denoising without any architectural changes or fine-tuning. Our results demonstrate that a single-step SFMSE inference achieves a real-time factor (RTF) of 0.013 on a consumer GPU while delivering perceptual quality comparable to a strong diffusion baseline requiring 60 NFEs. This work also provides an empirical analysis of the role of stochasticity in training and inference, bridging the gap between high-quality generative SE and low-latency constraints.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

语音增强 流匹配 实时处理
相关文章