cs.AI updates on arXiv.org 09月29日
联邦学习与入侵检测系统融合研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文系统探讨了联邦学习与网络入侵检测系统的融合,特别是深度学习和量子机器学习方法,分析了FL架构、部署策略、通信协议和聚合方法,深入研究了隐私保护技术、模型压缩方法以及针对DDoS、MITM和botnet攻击的联邦解决方案,并探索了量子联邦学习(QFL)。

arXiv:2509.21389v1 Announce Type: cross Abstract: This survey explores the integration of Federated Learning (FL) with Network Intrusion Detection Systems (NIDS), with particular emphasis on deep learning and quantum machine learning approaches. FL enables collaborative model training across distributed devices while preserving data privacy-a critical requirement in network security contexts where sensitive traffic data cannot be centralized. Our comprehensive analysis systematically examines the full spectrum of FL architectures, deployment strategies, communication protocols, and aggregation methods specifically tailored for intrusion detection. We provide an in-depth investigation of privacy-preserving techniques, model compression approaches, and attack-specific federated solutions for threats including DDoS, MITM, and botnet attacks. The survey further delivers a pioneering exploration of Quantum FL (QFL), discussing quantum feature encoding, quantum machine learning algorithms, and quantum-specific aggregation methods that promise exponential speedups for complex pattern recognition in network traffic. Through rigorous comparative analysis of classical and quantum approaches, identification of research gaps, and evaluation of real-world deployments, we outline a concrete roadmap for industrial adoption and future research directions. This work serves as an authoritative reference for researchers and practitioners seeking to enhance privacy, efficiency, and robustness of federated intrusion detection systems in increasingly complex network environments, while preparing for the quantum-enhanced cybersecurity landscape of tomorrow.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

联邦学习 入侵检测 量子机器学习 隐私保护 网络安全
相关文章