cs.AI updates on arXiv.org 09月29日
神经剪枝对模型可解释性的影响研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究了基于幅度剪枝和微调对低级显著图和高级概念表示的影响,通过对比不同剪枝水平下的后处理解释,发现适度剪枝可以提高显著图焦点和忠实度,同时保留语义上有意义的概念。

arXiv:2509.21387v1 Announce Type: cross Abstract: Prior works have shown that neural networks can be heavily pruned while preserving performance, but the impact of pruning on model interpretability remains unclear. In this work, we investigate how magnitude-based pruning followed by fine-tuning affects both low-level saliency maps and high-level concept representations. Using a ResNet-18 trained on ImageNette, we compare post-hoc explanations from Vanilla Gradients (VG) and Integrated Gradients (IG) across pruning levels, evaluating sparsity and faithfulness. We further apply CRAFT-based concept extraction to track changes in semantic coherence of learned concepts. Our results show that light-to-moderate pruning improves saliency-map focus and faithfulness while retaining distinct, semantically meaningful concepts. In contrast, aggressive pruning merges heterogeneous features, reducing saliency map sparsity and concept coherence despite maintaining accuracy. These findings suggest that while pruning can shape internal representations toward more human-aligned attention patterns, excessive pruning undermines interpretability.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

神经剪枝 模型可解释性 显著图 概念表示
相关文章