cs.AI updates on arXiv.org 09月29日
SAEmnesia:文本到图像扩散模型的概念重学新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出SAEmnesia,一种基于监督稀疏自动编码器训练的方法,通过系统性的概念标注促进一对一的概念-神经元映射,提高概念重学效率,并在UnlearnCanvas基准测试中取得显著成果。

arXiv:2509.21379v1 Announce Type: cross Abstract: Effective concept unlearning in text-to-image diffusion models requires precise localization of concept representations within the model's latent space. While sparse autoencoders successfully reduce neuron polysemanticity (i.e., multiple concepts per neuron) compared to the original network, individual concept representations can still be distributed across multiple latent features, requiring extensive search procedures for concept unlearning. We introduce SAEmnesia, a supervised sparse autoencoder training method that promotes one-to-one concept-neuron mappings through systematic concept labeling, mitigating feature splitting and promoting feature centralization. Our approach learns specialized neurons with significantly stronger concept associations compared to unsupervised baselines. The only computational overhead introduced by SAEmnesia is limited to cross-entropy computation during training. At inference time, this interpretable representation reduces hyperparameter search by 96.67% with respect to current approaches. On the UnlearnCanvas benchmark, SAEmnesia achieves a 9.22% improvement over the state-of-the-art. In sequential unlearning tasks, we demonstrate superior scalability with a 28.4% improvement in unlearning accuracy for 9-object removal.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

文本到图像扩散模型 概念重学 稀疏自动编码器 SAEmnesia UnlearnCanvas
相关文章