cs.AI updates on arXiv.org 09月29日
多模态融合导航:DMTF-AVN技术突破
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为DMTF-AVN的多模态融合导航技术,通过结合视觉和听觉信息,实现机器人对音频源的定位。实验证明,DMTF-AVN在成功率、路径效率和场景适应性方面均优于现有方法,为机器人导航的多模态融合策略提供了新的思路。

arXiv:2509.21377v1 Announce Type: cross Abstract: Audiovisual embodied navigation enables robots to locate audio sources by dynamically integrating visual observations from onboard sensors with the auditory signals emitted by the target. The core challenge lies in effectively leveraging multimodal cues to guide navigation. While prior works have explored basic fusion of visual and audio data, they often overlook deeper perceptual context. To address this, we propose the Dynamic Multi-Target Fusion for Efficient Audio-Visual Navigation (DMTF-AVN). Our approach uses a multi-target architecture coupled with a refined Transformer mechanism to filter and selectively fuse cross-modal information. Extensive experiments on the Replica and Matterport3D datasets demonstrate that DMTF-AVN achieves state-of-the-art performance, outperforming existing methods in success rate (SR), path efficiency (SPL), and scene adaptation (SNA). Furthermore, the model exhibits strong scalability and generalizability, paving the way for advanced multimodal fusion strategies in robotic navigation. The code and videos are available at https://github.com/zzzmmm-svg/DMTF.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多模态融合 机器人导航 DMTF-AVN 音频源定位 视觉与听觉信息
相关文章