cs.AI updates on arXiv.org 09月29日
基于反事实尺寸的文本到图像生成框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种针对反事实尺寸的文本到图像生成框架,旨在提高细粒度可控性,并通过实验验证了其在创意和探索性应用中的优势。

arXiv:2509.21375v1 Announce Type: cross Abstract: Text-to-image generation has advanced rapidly with large-scale multimodal training, yet fine-grained controllability remains a critical challenge. Counterfactual controllability, defined as the capacity to deliberately generate images that contradict common-sense patterns, remains a major challenge but plays a crucial role in enabling creativity and exploratory applications. In this work, we address this gap with a focus on counterfactual size (e.g., generating a tiny walrus beside a giant button) and propose an automatic prompt engineering framework that adapts base prompts into revised prompts for counterfactual images. The framework comprises three components: an image evaluator that guides dataset construction by identifying successful image generations, a supervised prompt rewriter that produces revised prompts, and a DPO-trained ranker that selects the optimal revised prompt. We construct the first counterfactual size text-image dataset and enhance the image evaluator by extending Grounded SAM with refinements, achieving a 114 percent improvement over its backbone. Experiments demonstrate that our method outperforms state-of-the-art baselines and ChatGPT-4o, establishing a foundation for future research on counterfactual controllability.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

文本到图像生成 反事实尺寸 可控性 创意应用 图像评估
相关文章