cs.AI updates on arXiv.org 09月29日
Transformer嵌入的符号代理建模研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究通过符号代理建模冻结的Transformer嵌入,以获得具有校准概率的紧凑、可审计的分类器。使用MEGP算法在多个数据集上实现,并展示了模型的有效性和可解释性。

arXiv:2509.21341v1 Announce Type: cross Abstract: We study symbolic surrogate modeling of frozen Transformer embeddings to obtain compact, auditable classifiers with calibrated probabilities. For five benchmarks (SST2G, 20NG, MNIST, CIFAR10, MSC17), embeddings from ModernBERT, DINOv2, and SigLIP are partitioned on the training set into disjoint, information-preserving views via semantic-preserving feature partitioning (SPFP). A cooperative multi-population genetic program (MEGP) then learns additive, closed-form logit programs over these views. Across 30 runs per dataset we report F1, AUC, log-loss, Brier, expected calibration error (ECE), and symbolic complexity; a canonical model is chosen by a one-standard-error rule on validation F1 with a parsimony tie-break. Temperature scaling fitted on validation yields substantial ECE reductions on test. The resulting surrogates achieve strong discrimination (up to F1 around 0.99 on MNIST, CIFAR10, MSC17; around 0.95 on SST2G), while 20NG remains most challenging. We provide reliability diagrams, dimension usage and overlap statistics, contribution-based importances, and global effect profiles (PDP and ALE), demonstrating faithful, cross-modal explanations grounded in explicit programs.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Transformer 符号代理建模 分类器 可解释性
相关文章