cs.AI updates on arXiv.org 09月29日
PIR-RAG:隐私保护RAG系统研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为PIR-RAG的隐私保护检索增强生成系统,通过语义聚类和私有信息检索协议优化了RAG工作流程,有效保护用户隐私。

arXiv:2509.21325v1 Announce Type: cross Abstract: Retrieval-Augmented Generation (RAG) has become a foundational component of modern AI systems, yet it introduces significant privacy risks by exposing user queries to service providers. To address this, we introduce PIR-RAG, a practical system for privacy-preserving RAG. PIR-RAG employs a novel architecture that uses coarse-grained semantic clustering to prune the search space, combined with a fast, lattice-based Private Information Retrieval (PIR) protocol. This design allows for the efficient retrieval of entire document clusters, uniquely optimizing for the end-to-end RAG workflow where full document content is required. Our comprehensive evaluation against strong baseline architectures, including graph-based PIR and Tiptoe-style private scoring, demonstrates PIR-RAG's scalability and its superior performance in terms of "RAG-Ready Latency"-the true end-to-end time required to securely fetch content for an LLM. Our work establishes PIR-RAG as a viable and highly efficient solution for privacy in large-scale AI systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

隐私保护 RAG 语义聚类 私有信息检索 AI系统
相关文章