cs.AI updates on arXiv.org 09月29日
ASAL++:基于多模态FM的人工生命自动搜索新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为ASAL++的新方法,通过多模态预训练模型(FMs)指导人工生命(ALife)模拟的自动搜索。该方法引入了两种搜索策略,并通过实证实验验证了其在促进视觉新颖性和进化序列连贯性方面的效果。

arXiv:2509.22447v1 Announce Type: new Abstract: Foundation models (FMs) have recently opened up new frontiers in the field of artificial life (ALife) by providing powerful tools to automate search through ALife simulations. Previous work aligns ALife simulations with natural language target prompts using vision-language models (VLMs). We build on Automated Search for Artificial Life (ASAL) by introducing ASAL++, a method for open-ended-like search guided by multimodal FMs. We use a second FM to propose new evolutionary targets based on a simulation's visual history. This induces an evolutionary trajectory with increasingly complex targets. We explore two strategies: (1) evolving a simulation to match a single new prompt at each iteration (Evolved Supervised Targets: EST) and (2) evolving a simulation to match the entire sequence of generated prompts (Evolved Temporal Targets: ETT). We test our method empirically in the Lenia substrate using Gemma-3 to propose evolutionary targets, and show that EST promotes greater visual novelty, while ETT fosters more coherent and interpretable evolutionary sequences. Our results suggest that ASAL++ points towards new directions for FM-driven ALife discovery with open-ended characteristics.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

人工生命 自动搜索 多模态预训练模型 进化算法 自然语言处理
相关文章