cs.AI updates on arXiv.org 09月29日
LLM反事实生成方法比较与改进
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文对比了Chatzi等人和Ravfogel等人提出的方法与作者提出的新方法,旨在改进LLM反事实生成。新方法基于LLM的预期解释,以非确定性因果模型表示,可直接应用于任何黑盒LLM。

arXiv:2509.22297v1 Announce Type: new Abstract: Recent work by Chatzi et al. and Ravfogel et al. has developed, for the first time, a method for generating counterfactuals of probabilistic Large Language Models. Such counterfactuals tell us what would - or might - have been the output of an LLM if some factual prompt ${\bf x}$ had been ${\bf x}^*$ instead. The ability to generate such counterfactuals is an important necessary step towards explaining, evaluating, and comparing, the behavior of LLMs. I argue, however, that the existing method rests on an ambiguous interpretation of LLMs: it does not interpret LLMs literally, for the method involves the assumption that one can change the implementation of an LLM's sampling process without changing the LLM itself, nor does it interpret LLMs as intended, for the method involves explicitly representing a nondeterministic LLM as a deterministic causal model. I here present a much simpler method for generating counterfactuals that is based on an LLM's intended interpretation by representing it as a nondeterministic causal model instead. The advantage of my simpler method is that it is directly applicable to any black-box LLM without modification, as it is agnostic to any implementation details. The advantage of the existing method, on the other hand, is that it directly implements the generation of a specific type of counterfactuals that is useful for certain purposes, but not for others. I clarify how both methods relate by offering a theoretical foundation for reasoning about counterfactuals in LLMs based on their intended semantics, thereby laying the groundwork for novel application-specific methods for generating counterfactuals.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 反事实生成 因果模型 黑盒模型 方法比较
相关文章