cs.AI updates on arXiv.org 09月29日
LLMs在组合优化中的应用评估
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种评估大型语言模型(LLMs)在组合优化中能力的方法,特别是针对2D装箱问题。通过结合LLMs与进化算法,提出了一种系统的方法来迭代生成和改进启发式解。实验结果表明,LLMs可以产生更有效的解决方案,同时所需的计算资源更少。

arXiv:2509.22255v1 Announce Type: new Abstract: This paper presents an evaluation framework for assessing Large Language Models' (LLMs) capabilities in combinatorial optimization, specifically addressing the 2D bin-packing problem. We introduce a systematic methodology that combines LLMs with evolutionary algorithms to generate and refine heuristic solutions iteratively. Through comprehensive experiments comparing LLM generated heuristics against traditional approaches (Finite First-Fit and Hybrid First-Fit), we demonstrate that LLMs can produce more efficient solutions while requiring fewer computational resources. Our evaluation reveals that GPT-4o achieves optimal solutions within two iterations, reducing average bin usage from 16 to 15 bins while improving space utilization from 0.76-0.78 to 0.83. This work contributes to understanding LLM evaluation in specialized domains and establishes benchmarks for assessing LLM performance in combinatorial optimization tasks.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLMs 组合优化 进化算法 启发式解 2D装箱问题
相关文章