cs.AI updates on arXiv.org 09月29日 12:08
ProRe:改进GUI代理的主动奖励系统
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为ProRe的主动奖励系统,用于解决大语言模型在GUI代理评估和训练中的奖励问题,通过通用推理器和特定领域评估代理,显著提高了奖励准确性和F1分数。

arXiv:2509.21823v1 Announce Type: new Abstract: Reward is critical to the evaluation and training of large language models (LLMs). However, existing rule-based or model-based reward methods struggle to generalize to GUI agents, where access to ground-truth trajectories or application databases is often unavailable, and static trajectory-based LLM-as-a-Judge approaches suffer from limited accuracy. To address these challenges, we propose ProRe, a proactive reward system that leverages a general-purpose reasoner and domain-specific evaluator agents (actors). The reasoner schedules targeted state probing tasks, which the evaluator agents then execute by actively interacting with the environment to collect additional observations. This enables the reasoner to assign more accurate and verifiable rewards to GUI agents. Empirical results on over 3K trajectories demonstrate that ProRe improves reward accuracy and F1 score by up to 5.3% and 19.4%, respectively. Furthermore, integrating ProRe with state-of-the-art policy agents yields a success rate improvement of up to 22.4%.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大语言模型 GUI代理 主动奖励系统 奖励准确度 F1分数
相关文章