Recent Questions - Artificial Intelligence Stack Exchange 09月29日
概念规模与PAC学习效率的关系
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了概念规模在高效PAC学习中的重要性。PAC学习要求算法在多项式时间内,以高概率和准确率学习概念。文中定义了输入空间、概念、概念类和假设集,并给出了高效PAC学习的正式定义。核心问题在于多项式时间复杂度为何依赖于概念规模,即最小编码长度。这是因为概念规模直接影响样本复杂度和计算复杂度,较小的概念规模意味着更少的样本和更快的计算,从而满足多项式时间要求。

📏 概念规模定义为目标概念的最小编码长度,直接影响样本复杂度和计算复杂度。较小的概念规模意味着更少的训练样本和更快的计算速度,从而满足多项式时间学习的要求。

🔍 在PAC学习中,算法需要在多项式时间内以高概率和准确率学习概念。概念规模作为多项式时间复杂度的一个参数,确保了学习过程的效率,避免因概念过于复杂导致计算不可行。

🔄 概念规模与输入空间维度n共同决定多项式时间复杂度。虽然维度n的增加会带来计算负担,但较小的概念规模可以部分抵消这种负担,使得学习过程仍然保持多项式时间效率。

My question is about the relevance of concept size to the polynomial-time/example constraints in efficient PAC-learning. To ask my question precisely I must first give some definitions.

Definitions:

Define the input space as $X_n = {\left\{ 0,1\right\} }^n$ and a concept $c$ as a subset of $X_n$. For example, all vectorized images of size $n$ representing a particular numeral $i$ (e.g. '5') collectively form the concept $c_i$ for that numeral. A concept class $C_n$ is a set of concepts. Continuing our example, the vectorized numeral concept class $\left\{ c_0, c_1, \dots c_9\right\}$ is the set of all ten vectorized numeral concepts for a given dimension $n$.

As an extension to include all dimensions we define $\mathcal{C} = \cup_{n \geq 1} C_n$. A hypothesis set $H_n$ is also a fixed set of subsets of $X_n$ (which might not necessarily align with $C_n$) and we define $\mathcal{H} = \cup_{n \geq 1} H_n$.

The following definition of efficient PAC-learnability is adapted from An Introduction to Computational Learning Theory by Kearns and Vazirani.

$\mathcal{C}$ is efficiently PAC-learnable if there exists an algorithm $\mathcal{A}$ such that for all $n \geq 1,$ all concepts $c \in C_n$, all probability distributions $D$ on $X_n$, and all $\epsilon, \delta \in \left(0,1\right)$, the algorithm halts within polynomial time $p{\left( n, \text{size}{\left(c\right)}, \frac{1}{\epsilon}, \frac{1}{\delta}\right)}$ and returns a hypothesis $h \in H_n$ such that $$ \underset{x \sim D}{\mathbb{P}}{\left[ h{\left(x\right)} \neq c{\left(x\right)} \leq \epsilon\right]} \geq 1 - \delta.$$

Question:

Now, in the polynomial $p{\left(\cdot, \cdot, \cdot, \cdot \right)}$, I understand the dependence on $\epsilon$ (accuracy) and $\delta$ (confidence). Additionally, I understand why the polynomial should depend on $n$ - the concept of learnability should be invariant to the time burden incurred from increasing the dimension of the input space (e.g. increasing the resolution of the image). What I do not understand is why the dependence on the size of the target concept (which I believe is usually taken to mean the smallest encoding of the target concept)?

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

PAC学习 概念规模 多项式时间复杂度 机器学习理论
相关文章