Recent Questions - Artificial Intelligence Stack Exchange 09月29日 12:01
跨地域机器学习模型泛化能力研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了在不同地理区域间迁移和应用机器学习模型的可行性。研究人员旨在评估模型在未见过的数据上的泛化能力,特别关注从一个地区的时序数据训练模型,然后将其应用于另一个地区数据的场景。文章通过关键词搜索和文献梳理,聚焦于领域泛化、域迁移、模型鲁棒性等概念,并提及了跨城市、跨区域的模型迁移和泛化能力的研究。尽管现有综述性文章和特定领域研究(如时间序列预测)提供了基础框架,但直接针对不同城市时序数据进行模型迁移和评估的研究仍需进一步细化和探索。

🎯 **跨领域泛化能力评估**:核心在于检验机器学习模型在源地理区域(如一个城市)训练后,能否有效泛化至目标地理区域(如另一个城市)的未见过数据。这直接关系到模型在实际应用中的鲁棒性和普适性。

⏳ **时序数据迁移的挑战**:文章关注的重点是将一个地理区域的时序数据(如城市A的气象数据)训练的模型应用于另一个地理区域的时序数据(如城市B的气象数据)。这种跨区域时序数据迁移面临着数据分布差异、潜在的非平稳性等挑战。

🔍 **关键词与研究方向**:为了找到相关文献,研究者尝试了“领域泛化”、“域迁移”、“模型鲁棒性”、“跨领域泛化”、“时间序列预测”、“空间泛化”、“地理迁移学习”等一系列关键词,并从已读文献中提炼出“分布外泛化”、“域漂移”、“未见目标域”、“观察到的源域”等概念,这些都指向了模型的跨域适应性研究。

📈 **现有研究的局限性**:虽然“领域泛化:一项调查”和“时间序列预测中的领域泛化”等文献提供了广泛的背景,但它们未能精确满足研究者对“城市A时序数据训练模型应用于城市B时序数据”这一特定场景的需求,表明该细分领域的研究深度和广度仍有待挖掘。

I need to find articles in which the authors trained machine learning model(s) with data from one geographical place, and, afterwards, applied the trained model on data about another geographical place. The need to do that is to know if the model can generalize well with unseen data, like, missing data (but I don't have any data missing).

I've tried asking suggestions for: AnswerThis, Perplexity, DeepSeek, ChatGPT, and Gemini. However, the AIs' suggested keywords did not lead me to the gold mine I was expecting to find.

Which keywords would best lead me to the articles I'm looking for?

Very relevant articles found (and read) after opening this question:

    (Zhou, 2023) — "Domain Generalization: A Survey";(Deng, 2024) — "Domain Generalization in Time Series Forecasting"

They, however, are still not specific enough to solve my problem: they are not about the source domain being a time series of one city, and the target domain being the time series of another city.

Interesting keywords taken from TITLE-ABS-KEY of the very relevant articles above:

    Out-of-Distribution Generalization;Domain Shift;Model Robustness;Domain Generalization;OOD Generalization;Time Series Forecasting;Time Series Analysis;Regularization;Unseen Target Domains;Observed Source Domains;Time Series Domains;Distributions Shifts;Domain Discrepancy Regulatization.

Search strings I've tried so far:

The number before the string is the number of articles returned on SCOPUS.

------------------------------------------------------------------------TITLE-ABS-KEY ( A ) AND NOT TITLE-ABS-KEY ( B ):------------------------------------------------------------------------313 A = "Domain Generaliz*" AND ( "Drought" OR "SPEI" OR "SPI" OR "Forecast*" OR "Regression" OR "Time Series" OR "Timeseries" OR "Weather" OR "Meteorolog*" OR "Precipitation" )    B = ""NOTE: missing ( "Predict*" OR "Environment*" )------------------------------------------------------------------------143 A = "Cross-Domain Generaliz*" AND ( "Drought" OR "SPEI" OR "SPI" OR "Forecast*" OR "Regression" OR "Time Series" OR "Timeseries" OR "Weather" OR "Meteorolog*" OR "Precipitation" OR "Predict*" OR "Environment*" )    B = ""------------------------------------------------------------------------67  A = "Cross-Domain" AND ( "Drought" OR "SPEI" OR "SPI" OR "Timeseries" OR "Meteorolog*" OR "Precipitation")    B = ""------------------------------------------------------------------------5   A = "Spa* Domain Generaliz*" OR "Geo* Domain Generaliz*"                           B = ""------------------------------------------------------------------------1   A = "Spa* Cross-Domain Generaliz*" OR "Geo* Cross-Domain Generaliz*"                      B = ""------------------------------------------------------------------------

Keywords suggested by my particular AI's Committee:

    geographical generalization;transfer learning;cross-region generalization;cross-city transferability and generalization;explicitly testing transferability across cities;model transfer between cities;cross-city machine learning;formal transfer learning and domain adaptation approach;knowledge transfer;cross-city knowledge transfer;transfer across cities;cross-city transfer learning;pooling data across cities;spatial generalization;transfer from epicenter cities to other urban neighborhoods;domain adaptation;spatial correlation;domain adaptation between cities;spatial transfer learning;geographical generalization;cross-location generalization;spatial transferability;geographic transferability;spatial generalization;out-of-region prediction;cross-region model transfer;spatial domain adaptation;spatial domain generalization;geographic transfer learning;geographic domain adaptation;spatial generalization;geographic domain adaptation;geographic transfer learning.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

领域泛化 跨领域学习 时序数据 地理迁移 机器学习 模型泛化 域适应 Domain Generalization Cross-Domain Learning Time Series Data Geographic Transfer Machine Learning Model Generalization Domain Adaptation
相关文章