Recent Questions - Artificial Intelligence Stack Exchange 09月29日 12:01
多GRU层神经网络权重矩阵分析
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文分析了使用PyTorch实现的多GRU层神经网络中权重矩阵的特性,重点关注了隐藏-隐藏层权重矩阵的奇异性和标准差,并探讨了这种现象的可能原因。

I have trained a Neural Network with a multi GRU layer in it. I did not use a L1/L2 regularization only gradient descent. I used the pytorch implementationnn.GRU(1024,1024,4,0.1)After training I checked the Wight Matrices.I found some strange effects in hh_l0_in:

For the learnable hidden-hidden layer the standard deviation of the secondary diagonal is a lot higher then in the rest of the Matrices. The standard deviation of the Wight Matrices for the first layer:

The other layer have similar effects however the standard diviation of the output layer is different:

The hh_lX_in also has a average of ~-20. Is this a effect of the input data or is it normal for GRU to have this bigger standard deviation on the secondary matrix. What causes this effect?

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

神经网络 GRU 权重矩阵 PyTorch 数据分析
相关文章