Recent Questions - Artificial Intelligence Stack Exchange 09月29日 12:01
注意力机制在序列模型中的应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了注意力机制在RNN、LSTM、CNN序列模型以及Transformer中的应用,并对比了它们的区别与联系。

I am learning Transformers and want to understand the roles of Self-attention and Multi-head attention, but first, I am interested in understanding how "attention" is used and how it applies to (1) Plain RNN models (or LSTM if that is better), (2) When CNN networks are used for Sequence Models, and (3) In the context of a Transformer. I understand that one distinction between these is that RNN, LSTM and applied CNN in the pre-transformer context of building Sequence Models are sequential, whereas when using Transformers, we process the input sequence "all at once" similar to how we process images (all pixels are sent in at once so the CONV layers can encode the image. Any help or point me to previous entries or journal articles or good web/blogs would be appreciated.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

注意力机制 序列模型 Transformer RNN LSTM
相关文章