WhatIs.com 09月29日 10:49
医院采用预测AI上升
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

新联邦数据显示,医院采用预测AI在过去一年中有所上升,2024年71%的医院将其集成到EHR中,比2023年的66%有所增加。报告由助理技术政策秘书/国家卫生信息技术协调员办公室(ASTP/ONC)发布,探讨了预测AI的利用、评估和治理趋势。预测AI被定义为“使用统计分析机器学习为个人分类或生成风险评分,如再入院风险预测、早期疾病检测、预约未出席和治疗建议”。数据来自2023年和2024年美国医院协会年度调查的信息技术补充调查。报告显示,中大型和非关键访问医院采用预测AI的比率高于小型和关键访问医院。同样,系统附属和城市医院使用预测AI的比率高于农村和独立医院。此外,医院使用预测AI的方式因EHR供应商而异。2024年,使用市场领先EHR供应商的医院中有90%使用预测AI,而使用其他供应商的医院中只有50%使用。医院更有可能使用其EHR供应商提供的预测AI。2024年,大多数医院(80%)使用其EHR开发商提供的预测AI,而52%使用第三方开发的AI,50%使用自行开发的AI。从2023年到2024年,医院增加使用预测AI主要是为了简化或自动化账单程序、促进日程安排和识别高风险门诊患者以指导后续护理。然而,预测AI的来源也在起作用,决定了医院专注于哪些用例。例如,简化或自动化账单的预测AI使用率在使用第三方或自行开发的AI的医院中更高(73%),而在使用EHR开发商提供的AI的医院中较低(58%)。此外,识别高风险门诊患者的预测AI使用率在使用第三方或自行开发的AI的医院中增长更快,而在使用EHR开发商提供的AI的医院中增长较慢。随着预测AI使用率的上升,大多数医院都在评估这些模型。2024年,82%的医院评估预测AI的准确性,74%评估模型中的偏差,79%进行实施后评估或监控。此外,2024年,大多数医院有多个治理实体来评估预测AI。负责评估预测AI的最常见实体是特定的委员会或任务组(66%)和部门/部门领导(60%)。最少的AI评估实体是IT人员。随着AI越来越集成到医疗保健交付中,AI治理正变得至关重要。不仅卫生系统正在建立内部AI治理委员会和框架,而且还正在进入合作以创建行业范围内的护栏和指导方针。

📈预测AI在医院中的采用率在过去一年中有所上升,2024年71%的医院将其集成到EHR中,比2023年的66%有所增加。

📊报告由助理技术政策秘书/国家卫生信息技术协调员办公室(ASTP/ONC)发布,探讨了预测AI的利用、评估和治理趋势。

🔬预测AI被定义为使用统计分析机器学习为个人分类或生成风险评分,如再入院风险预测、早期疾病检测、预约未出席和治疗建议。

🏥中大型和非关键访问医院采用预测AI的比率高于小型和关键访问医院。同样,系统附属和城市医院使用预测AI的比率高于农村和独立医院。

🔐医院更有可能使用其EHR供应商提供的预测AI。2024年,大多数医院(80%)使用其EHR开发商提供的预测AI,而52%使用第三方开发的AI,50%使用自行开发的AI。

📈从2023年到2024年,医院增加使用预测AI主要是为了简化或自动化账单程序、促进日程安排和识别高风险门诊患者以指导后续护理。

📊随着预测AI使用率的上升,大多数医院都在评估这些模型。2024年,82%的医院评估预测AI的准确性,74%评估模型中的偏差,79%进行实施后评估或监控。

🏥2024年,大多数医院有多个治理实体来评估预测AI。负责评估预测AI的最常见实体是特定的委员会或任务组(66%)和部门/部门领导(60%)。

<p>New federal <a href="https://www.healthit.gov/data/data-briefs/hospital-trends-use-evaluation-and-governance-predictive-ai-2023-2024"&gt;data&lt;/a&gt; shows that hospital adoption of predictive AI rose over a one-year period, with 71% of hospitals using predictive AI integrated into their EHR in 2024, up from 66% in 2023.</p><div class="ad-wrapper ad-embedded"> <div id="halfpage" class="ad ad-hp"> <script>GPT.display('halfpage')</script> </div> <div id="mu-1" class="ad ad-mu"> <script>GPT.display('mu-1')</script> </div> </div> <p>Published by the Assistant Secretary for Technology Policy/Office of the National Coordinator for Health IT<b> </b>(ASTP/ONC), the report examines trends in the utilization, evaluation and governance of <a href="https://www.techtarget.com/searchenterpriseai/tip/Generative-AI-vs-predictive-AI-Understanding-the-differences"&gt;predictive AI</a>. The report defines predictive AI as "using statistical analysis and machine learning to classify or produce a risk score for individuals (such as readmission risk prediction, early disease detection, appointment no-show, and treatment recommendations)."</p> <p>The data for the report comes from the Information Technology Supplement to the American Hospital Association Annual Survey from 2023 and 2024. The 2024 survey was fielded from April to September 2024 among 2,253 non-federal acute care hospitals with a response rate of 51%. The 2023 survey, conducted from March to August 2023, had a 58% response rate of 2,547 non-federal acute care hospitals.</p> <p>The report shows that medium, large and non-critical access hospitals used predictive AI at higher rates compared to small and critical access hospitals. Similarly, system-affiliated and urban hospitals used predictive AI at higher rates than rural and independent hospitals.</p> <p>Further, hospitals' use of predictive AI varied by EHR vendor. In 2024, a majority of hospitals (90%) using the market-leading EHR vendor used predictive AI versus 50% of hospitals using other vendors.</p> <p>Not only that, but hospitals were more likely to use predictive AI provided by their EHR vendor. Most hospitals (80%) used predictive AI sourced from their EHR developer in 2024, while 52% used AI developed by a third party and 50% used AI that they developed.</p> <p>From 2023 to 2024, hospitals increased their use of predictive AI primarily to simplify or automate billing procedures, facilitate scheduling and identify high-risk outpatients to guide follow-up care. However, the source of the predictive AI also played a role in which use case hospitals focused on.</p> <p>For instance, the use of predictive AI for simplifying or automating billing was higher among hospitals using third-party or self-developed AI (73%) compared to AI sourced from their EHR developer (58%). Additionally, the use of predictive AI to identify high-risk outpatients increased at higher rates among hospitals using third-party or self-developed AI compared to those using EHR vendor-developed AI.</p> <p>Alongside growing rates of predictive AI use, a majority of hospitals reported evaluating these models. In 2024, 82% of hospitals evaluated predictive AI for accuracy, 74% assessed the models for bias and 79% conducted post-implementation evaluation or monitoring.</p> <p>Additionally, in 2024, most hospitals had multiple governance entities for predictive AI. The most-reported entities responsible for evaluating predictive AI were a&nbsp;specific committee or task force (66%) and division/department leaders (60%). The least-reported AI evaluation entities were IT staff.</p> <p>AI governance is proving vital as the technology becomes increasingly integrated into healthcare delivery. Not only are health systems <a href="https://www.techtarget.com/healthtechanalytics/feature/How-health-systems-are-facilitating-AI-governance"&gt;establishing internal AI governance</a> committees and frameworks, but they are also entering into collaboratives to create <a href="https://www.techtarget.com/healthtechanalytics/feature/Exploring-industry-efforts-to-guide-health-AI-adoption-use"&gt;industry-wide guardrails and guidance</a>.&nbsp;</p> <p>"As more resources are becoming available to improve AI governance, it will be critical to understand how different frameworks contribute to effective evaluation and monitoring practices," the report concluded.</p> <p><i>Anuja Vaidya has covered the healthcare industry since 2012. She currently covers the virtual healthcare landscape, including telehealth, remote patient monitoring and digital therapeutics.</i></p>

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

医院 预测AI EHR 技术政策 卫生信息技术 治理 数据分析 机器学习
相关文章