Character AI Blog 09月28日
pipeling-sft开源框架助力大规模LLM微调
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

Character.AI开源了pipeling-sft框架,这是一个轻量级但功能强大的训练框架,专为全参数监督微调(SFT)大规模混合专家(MoE)架构的大型语言模型(LLM)而设计。该框架最初用于探索微调DeepSeek V3的更好方法,但其功能可推广到许多类似的MoE开源LLM。pipeling-sft通过多级并行、支持bfloat16和FP8训练、无缝集成HuggingFace、内置训练稳定性以及灵活可扩展性,简化了微调过程,提高了效率和稳定性。

🔧 pipeling-sft是一个轻量级但功能强大的训练框架,专为全参数监督微调(SFT)大规模混合专家(MoE)架构的大型语言模型(LLM)而设计。该框架最初用于探索微调DeepSeek V3的更好方法,但其功能可推广到许多类似的MoE开源LLM。

🚀 pipeling-sft通过多级并行、支持bfloat16和FP8训练、无缝集成HuggingFace、内置训练稳定性以及灵活可扩展性,简化了微调过程,提高了效率和稳定性。它结合了流水线并行、专家并行和张量并行,有效地将非常大的MoE模型分布在多个节点和GPU上。

🤝 pipeling-sft是开源的,旨在加速开源LLM研究,帮助研究人员和工程师更轻松地构建强大的、特定领域的应用程序。Character.AI的研究团队表示愿意与社区合作,收集反馈并共同发展该项目。

At Character.AI, we’re excited to share an experimental project from our research team with the open-source community: pipeling-sft — a lightweight yet powerful training framework built for full-parameter supervised fine-tuning (SFT) of large-scale LLMs with Mixture-of-Experts (MoE) architectures.

This framework was originally developed to explore better ways of fine-tuning DeepSeek V3, but its capabilities generalize to many similar MoE-based OSS LLMs. Now, we’re releasing it publicly to help the community move faster, scale more efficiently, and customize more easily for downstream tasks.


Why This Matters

Fine-tuning massive language models—especially MoE-based ones—is notoriously challenging. Memory limits, parallelization complexity, and unstable training dynamics all pose significant barriers for researchers and engineers alike. pipeling-sft is designed to make this process simpler, faster, and more stable.

Here’s how:

    Multi-Level Parallelism: Combines pipeline parallelism, expert parallelism, and tensor parallelism to shard very large MoE models across multiple nodes and GPUs efficiently.Both BF16 and FP8 Training: Supports bfloat16 training with custom mixed-precision optimizers for stability, and includes experimental FP8 training support to push the frontier of efficiency even further.Seamless HuggingFace Integration: Allows researchers and engineers to start from official HuggingFace model weights and export directly back into the HuggingFace checkpoint format—no extra preprocessing or post-processing steps required.Training Stability Built-In: Gradient synchronization and custom mixed-precision optimizers help prevent divergence and enable faster convergence, even under low learning rates.Flexible & Hackable: Written in pure PyTorch, which makes it easy to adapt, extend, or repurpose for specific models, tasks, or infrastructure.

Call for Collaboration

While pipeling-sft is still an experimental project, it’s already filling an important gap for teams who want to fine-tune very large LLMs without reinventing infrastructure. Our research team at Character.ai is open-sourcing it to accelerate OSS LLM research and help others build powerful, domain-specific applications more easily.

If you're working with large MoE models—or want to start—this project is for you. We'd love to collaborate, hear your feedback, and grow this project together.

Check it out on GitHub: https://github.com/character-ai/pipelining-sft

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

pipeling-sft LLM微调 混合专家架构 开源框架 Character.AI
相关文章