index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html
![]()
本教程详细介绍了如何在Google Colab中构建一个先进的AI桌面自动化代理。该代理能够理解自然语言指令,模拟文件操作、浏览器行为和工作流等桌面任务,并通过虚拟环境提供交互式反馈。通过结合自然语言处理、任务执行和模拟桌面,我们创建了一个直观且强大的系统,让用户无需依赖外部API即可体验自动化概念。所有代码均已提供,可在Google Colab中无缝运行。
🤖 **AI桌面自动化代理的构建**:该代理利用Python库在Google Colab环境中运行,能够理解自然语言指令并模拟执行桌面任务。它整合了NLP处理、任务执行和虚拟桌面环境,提供了一个无需外部API即可体验自动化概念的平台。
⚙️ **核心组件与功能**:系统包含`VirtualDesktop`模拟文件系统和应用状态,`NLPProcessor`负责解析用户命令并提取意图与参数,`TaskExecutor`则将解析后的指令转化为实际操作。`DesktopAgent`协调这些组件,处理命令、记录历史并提供状态仪表板。
💡 **自然语言交互与任务执行**:代理能够识别文件操作、浏览器动作、系统命令、应用任务和复杂工作流等多种任务类型。用户可以通过自然语言描述需求,代理会自动解析并执行相应操作,如打开文件、浏览网页、检查系统状态或执行自动化流程。
📊 **实时监控与统计**:代理提供一个实时的状态仪表板,展示已完成任务数、成功率和平均执行时间等统计数据,并列出最近执行的任务和当前运行的应用程序状态,让用户随时了解代理的运行情况。
In this tutorial, we walk through the process of building an advanced AI desktop automation agent that runs seamlessly in Google Colab. We design it to interpret natural language commands, simulate desktop tasks such as file operations, browser actions, and workflows, and provide interactive feedback through a virtual environment. By combining NLP, task execution, and a simulated desktop, we create a system that feels both intuitive and powerful, allowing us to experience automation concepts without relying on external APIs. Check out the FULL CODES here.
import reimport jsonimport timeimport randomimport threadingfrom datetime import datetimefrom typing import Dict, List, Any, Tuplefrom dataclasses import dataclass, asdictfrom enum import Enumtry: from IPython.display import display, HTML, clear_output import matplotlib.pyplot as plt import numpy as np COLAB_MODE = Trueexcept ImportError: COLAB_MODE = False
We begin by importing essential Python libraries that support data handling, visualization, and simulation. We set up Colab-specific tools to run the tutorial interactively in a seamless environment. Check out the FULL CODES here.
class TaskType(Enum): FILE_OPERATION = "file_operation" BROWSER_ACTION = "browser_action" SYSTEM_COMMAND = "system_command" APPLICATION_TASK = "application_task" WORKFLOW = "workflow"@dataclassclass Task: id: str type: TaskType command: str status: str = "pending" result: str = "" timestamp: str = "" execution_time: float = 0.0
We define the structure of our automation system. We create an enum to categorize task types and a Task dataclass that helps us track each command with its details, status, and execution results. Check out the FULL CODES here.
class VirtualDesktop: """Simulates a desktop environment with applications and file system""" def __init__(self): self.applications = { "browser": {"status": "closed", "tabs": [], "current_url": ""}, "file_manager": {"status": "closed", "current_path": "/home/user"}, "text_editor": {"status": "closed", "current_file": "", "content": ""}, "email": {"status": "closed", "unread": 3, "inbox": []}, "terminal": {"status": "closed", "history": []} } self.file_system = { "/home/user/": { "documents/": { "report.txt": "Important quarterly report content...", "notes.md": "# Meeting Notes\n- Project update\n- Budget review" }, "downloads/": { "data.csv": "name,age,city\nJohn,25,NYC\nJane,30,LA", "image.jpg": "[Binary image data]" }, "desktop/": {} } } self.screen_state = { "active_window": None, "mouse_position": (0, 0), "clipboard": "" } def get_system_info(self) -> Dict: return { "cpu_usage": random.randint(5, 25), "memory_usage": random.randint(30, 60), "disk_space": random.randint(60, 90), "network_status": "connected", "uptime": "2 hours 15 minutes" }class NLPProcessor: """Processes natural language commands and extracts intents""" def __init__(self): self.intent_patterns = { TaskType.FILE_OPERATION: [ r"(open|create|delete|copy|move|find)\s+(file|folder|document)", r"(save|edit|write)\s+.*\.(txt|doc|pdf|csv)", r"(list|show)\s+(files|directories)", r"(download|upload)\s+.*" ], TaskType.BROWSER_ACTION: [ r"(open|visit|go to|navigate)\s+.*\.(com|org|net)", r"(search|google|find)\s+.*", r"(click|press|select)\s+(button|link)", r"(fill|enter|type)\s+.*" ], TaskType.SYSTEM_COMMAND: [ r"(check|show)\s+(system|cpu|memory|disk)", r"(run|execute|start)\s+program", r"(restart|shutdown|sleep)", r"(install|update|configure)\s+.*" ], TaskType.APPLICATION_TASK: [ r"(open|start|launch)\s+(browser|editor|email|terminal)", r"(close|quit|exit)\s+.*", r"(send|compose|reply)\s+(email|message)", r"(edit|modify|change)\s+.*" ], TaskType.WORKFLOW: [ r"(automate|batch|bulk)\s+.*", r"(combine|merge|join)\s+.*", r"(schedule|remind|notify)\s+.*", r"(backup|sync|export)\s+.*" ] } def extract_intent(self, command: str) -> Tuple[TaskType, float]: """Extract task type and confidence from natural language command""" command_lower = command.lower() best_match = TaskType.SYSTEM_COMMAND best_confidence = 0.0 for task_type, patterns in self.intent_patterns.items(): for pattern in patterns: if re.search(pattern, command_lower): confidence = len(re.findall(pattern, command_lower)) * 0.3 if confidence > best_confidence: best_match = task_type best_confidence = confidence return best_match, min(best_confidence, 1.0) def extract_parameters(self, command: str, task_type: TaskType) -> Dict[str, str]: """Extract parameters from command based on task type""" params = {} command_lower = command.lower() if task_type == TaskType.FILE_OPERATION: file_match = re.search(r'[\w/.-]+\.\w+', command) if file_match: params['filename'] = file_match.group() path_match = re.search(r'/[\w/.-]+', command) if path_match: params['path'] = path_match.group() elif task_type == TaskType.BROWSER_ACTION: url_match = re.search(r'https?://[\w.-]+|[\w.-]+\.(com|org|net|edu)', command) if url_match: params['url'] = url_match.group() search_match = re.search(r'(?:search|find|google)\s+["\']?([^"\']+)["\']?', command_lower) if search_match: params['query'] = search_match.group(1) elif task_type == TaskType.APPLICATION_TASK: app_match = re.search(r'(browser|editor|email|terminal|calculator)', command_lower) if app_match: params['application'] = app_match.group(1) return params
We simulate a virtual desktop with applications, a file system, and system states while also building an NLP processor. We establish rules to identify user intents from natural language commands and extract useful parameters, such as filenames, URLs, or application names. This allows us to bridge natural language input with structured automation tasks. Check out the FULL CODES here.
class TaskExecutor: """Executes tasks on the virtual desktop""" def __init__(self, desktop: VirtualDesktop): self.desktop = desktop self.execution_log = [] def execute_file_operation(self, params: Dict[str, str], command: str) -> str: """Simulate file operations""" if "open" in command.lower(): filename = params.get('filename', 'unknown.txt') return f"✓ Opened file: {filename}\n File contents loaded in text editor" elif "create" in command.lower(): filename = params.get('filename', 'new_file.txt') return f"✓ Created new file: {filename}\n File ready for editing" elif "list" in command.lower(): files = list(self.desktop.file_system["/home/user/documents/"].keys()) return f" Files found:\n" + "\n".join([f" • {f}" for f in files]) return "✓ File operation completed successfully" def execute_browser_action(self, params: Dict[str, str], command: str) -> str: """Simulate browser actions""" if "open" in command.lower() or "visit" in command.lower(): url = params.get('url', 'example.com') self.desktop.applications["browser"]["current_url"] = url self.desktop.applications["browser"]["status"] = "open" return f" Navigated to: {url}\n✓ Page loaded successfully" elif "search" in command.lower(): query = params.get('query', 'search term') return f" Searching for: '{query}'\n✓ Found 1,247 results" return "✓ Browser action completed" def execute_system_command(self, params: Dict[str, str], command: str) -> str: """Simulate system commands""" if "check" in command.lower() or "show" in command.lower(): info = self.desktop.get_system_info() return f" System Status:\n" + \ f" CPU: {info['cpu_usage']}%\n" + \ f" Memory: {info['memory_usage']}%\n" + \ f" Disk: {info['disk_space']}% used\n" + \ f" Network: {info['network_status']}" return "✓ System command executed" def execute_application_task(self, params: Dict[str, str], command: str) -> str: """Simulate application tasks""" app = params.get('application', 'unknown') if "open" in command.lower(): self.desktop.applications[app]["status"] = "open" return f" Launched {app.title()}\n✓ Application ready for use" elif "close" in command.lower(): if app in self.desktop.applications: self.desktop.applications[app]["status"] = "closed" return f" Closed {app.title()}" return f"✓ {app.title()} task completed" def execute_workflow(self, params: Dict[str, str], command: str) -> str: """Simulate complex workflow execution""" steps = [ "Analyzing workflow requirements...", "Preparing automation steps...", "Executing batch operations...", "Validating results...", "Generating report..." ] result = " Workflow Execution:\n" for i, step in enumerate(steps, 1): result += f" {i}. {step} ✓\n" if COLAB_MODE: time.sleep(0.1) return result + " Workflow completed successfully!"class DesktopAgent: """Main desktop automation agent class - coordinates all components""" def __init__(self): self.desktop = VirtualDesktop() self.nlp = NLPProcessor() self.executor = TaskExecutor(self.desktop) self.task_history = [] self.active = True self.stats = { "tasks_completed": 0, "success_rate": 100.0, "average_execution_time": 0.0 } def process_command(self, command: str) -> Task: """Process a natural language command and execute it""" start_time = time.time() task_id = f"task_{len(self.task_history) + 1:04d}" task_type, confidence = self.nlp.extract_intent(command) task = Task( id=task_id, type=task_type, command=command, timestamp=datetime.now().strftime("%H:%M:%S") ) try: params = self.nlp.extract_parameters(command, task_type) if task_type == TaskType.FILE_OPERATION: result = self.executor.execute_file_operation(params, command) elif task_type == TaskType.BROWSER_ACTION: result = self.executor.execute_browser_action(params, command) elif task_type == TaskType.SYSTEM_COMMAND: result = self.executor.execute_system_command(params, command) elif task_type == TaskType.APPLICATION_TASK: result = self.executor.execute_application_task(params, command) elif task_type == TaskType.WORKFLOW: result = self.executor.execute_workflow(params, command) else: result = " Command type not recognized" task.status = "completed" task.result = result self.stats["tasks_completed"] += 1 except Exception as e: task.status = "failed" task.result = f" Error: {str(e)}" task.execution_time = round(time.time() - start_time, 3) self.task_history.append(task) self.update_stats() return task def update_stats(self): """Update agent statistics""" if self.task_history: successful_tasks = sum(1 for t in self.task_history if t.status == "completed") self.stats["success_rate"] = round((successful_tasks / len(self.task_history)) * 100, 1) total_time = sum(t.execution_time for t in self.task_history) self.stats["average_execution_time"] = round(total_time / len(self.task_history), 3) def get_status_dashboard(self) -> str: """Generate a status dashboard""" recent_tasks = self.task_history[-5:] if self.task_history else [] dashboard = f"""╭━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╮│ AI DESKTOP AGENT STATUS │├──────────────────────────────────────────────────────┤│ Statistics: ││ • Tasks Completed: {self.stats['tasks_completed']:<10} ││ • Success Rate: {self.stats['success_rate']:<10}% ││ • Avg Exec Time: {self.stats['average_execution_time']:<10}s │├──────────────────────────────────────────────────────┤│ Desktop Applications: │""" for app, info in self.desktop.applications.items(): status_icon = "" if info["status"] == "open" else "" dashboard += f"│ {status_icon} {app.title():<12} ({info['status']:<6}) │\n" dashboard += "├──────────────────────────────────────────────────────┤\n" dashboard += "│ Recent Tasks: │\n" if recent_tasks: for task in recent_tasks: status_icon = "" if task.status == "completed" else "" dashboard += f"│ {status_icon} {task.timestamp} - {task.type.value:<15} │\n" else: dashboard += "│ No tasks executed yet │\n" dashboard += "╰━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╯" return dashboard
We implement the executor that turns our parsed intents into concrete actions and realistic outputs on the virtual desktop. We then wire everything together in the DesktopAgent, where we process natural language, execute tasks, and continuously track success, latency, and a live status dashboard. Check out the FULL CODES here.
def run_advanced_demo(): """Run an advanced interactive demo of the AI Desktop Agent""" print(" Initializing Advanced AI Desktop Automation Agent...") time.sleep(1) agent = DesktopAgent() print("\n" + "="*60) print(" AI DESKTOP AUTOMATION AGENT - ADVANCED TUTORIAL") print("="*60) print("A sophisticated AI agent that understands natural language") print("commands and automates desktop tasks in a simulated environment.") print("\n Try these example commands:") print(" • 'open the browser and go to github.com'") print(" • 'create a new file called report.txt'") print(" • 'check system performance'") print(" • 'show me the files in documents folder'") print(" • 'automate email processing workflow'") demo_commands = [ "check system status and show CPU usage", "open browser and navigate to github.com", "create a new file called meeting_notes.txt", "list all files in the documents directory", "launch text editor application", "automate data backup workflow" ] print(f"\n Running {len(demo_commands)} demonstration commands...\n") for i, command in enumerate(demo_commands, 1): print(f"[{i}/{len(demo_commands)}] Command: '{command}'") print("-" * 50) task = agent.process_command(command) print(f"Task ID: {task.id}") print(f"Type: {task.type.value}") print(f"Status: {task.status}") print(f"Execution Time: {task.execution_time}s") print(f"Result:\n{task.result}") print() if COLAB_MODE: time.sleep(0.5) print("\n" + "="*60) print(" FINAL AGENT STATUS") print("="*60) print(agent.get_status_dashboard()) return agentdef interactive_mode(agent): """Run interactive mode for user input""" print("\n INTERACTIVE MODE ACTIVATED") print("Type your commands below (type 'quit' to exit, 'status' for dashboard):") print("-" * 60) while True: try: user_input = input("\n Agent> ").strip() if user_input.lower() in ['quit', 'exit', 'q']: print(" AI Agent shutting down. Goodbye!") break elif user_input.lower() in ['status', 'dashboard']: print(agent.get_status_dashboard()) continue elif user_input.lower() in ['help', '?']: print(" Available commands:") print(" • Any natural language command") print(" • 'status' - Show agent dashboard") print(" • 'help' - Show this help") print(" • 'quit' - Exit AI Agent") continue elif not user_input: continue print(f"Processing: '{user_input}'...") task = agent.process_command(user_input) print(f"\n Task {task.id} [{task.type.value}] - {task.status}") print(task.result) except KeyboardInterrupt: print("\n\n AI Agent interrupted. Goodbye!") break except Exception as e: print(f" Error: {e}")if __name__ == "__main__": agent = run_advanced_demo() if COLAB_MODE: print("\n To continue with interactive mode, run:") print("interactive_mode(agent)") else: interactive_mode(agent)
We run a scripted demo that processes realistic commands, prints results, and finishes with a live status dashboard. We then provide an interactive loop where we type natural language tasks, check the status, and receive immediate feedback. Finally, we auto-start the demo and, in Colab, we show how to launch interactive mode with a single call.
In conclusion, we demonstrate how an AI agent can handle a wide variety of desktop-like tasks in a simulated environment using only Python. We see how natural language inputs are translated into structured tasks, executed with realistic outputs, and summarized in a visual dashboard. With this foundation, we position ourselves to extend the agent with more complex behaviors, richer interfaces, and real-world integrations, making desktop automation smarter, more interactive, and easier to use.
Check out the FULL CODES here. Feel free to check out our GitHub Page for Tutorials, Codes and Notebooks. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter.
The post How to Build an Intelligent AI Desktop Automation Agent with Natural Language Commands and Interactive Simulation? appeared first on MarkTechPost.