cs.AI updates on arXiv.org 09月26日
开发者解释模型挑战与政策指导
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨开发者解释机器学习模型面临的挑战,以及政策指导在其中的作用,并基于实验分析提出教育干预建议。

arXiv:2503.15512v3 Announce Type: replace-cross Abstract: Modern machine learning produces models that are impossible for users or developers to fully understand -- raising concerns about trust, oversight, safety, and human dignity when they are integrated into software products. Transparency and explainability methods aim to provide some help in understanding models, but it remains challenging for developers to design explanations that are understandable to target users and effective for their purpose. Emerging guidelines and regulations set goals but may not provide effective actionable guidance to developers. In a large-scale experiment with 124 participants, we explored how developers approach providing end-user explanations, including what challenges they face, and to what extent specific policies can guide their actions. We investigated whether and how specific forms of policy guidance help developers design explanations and provide evidence for policy compliance for an ML-powered screening tool for diabetic retinopathy. Participants across the board struggled to produce quality explanations and comply with the provided policies. Contrary to our expectations, we found that the nature and specificity of policy guidance had little effect. We posit that participant noncompliance is in part due to a failure to imagine and anticipate the needs of non-technical stakeholders. Drawing on cognitive process theory and the sociological imagination to contextualize participants' failure, we recommend educational interventions.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

机器学习 模型解释 政策指导 开发者挑战 教育干预
相关文章