cs.AI updates on arXiv.org 09月26日
异步感知机:高效测试时训练架构
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为异步感知机(APM)的计算高效架构,适用于测试时训练(TTT)。APM能以不对称的方式逐个处理图像的块,同时仍然在网络中编码语义感知。实验表明,APM在无需特定数据集预训练、增强或任何前文任务的情况下,能够识别分布外的图像,并提供了超过现有TTT方法的表现。

arXiv:2410.20535v4 Announce Type: replace-cross Abstract: In this work, we propose Asynchronous Perception Machine (APM), a computationally-efficient architecture for test-time-training (TTT). APM can process patches of an image one at a time in any order asymmetrically and still encode semantic-awareness in the net. We demonstrate APM's ability to recognize out-of-distribution images without dataset-specific pre-training, augmentation or any-pretext task. APM offers competitive performance over existing TTT approaches. To perform TTT, APM just distills test sample's representation once. APM possesses a unique property: it can learn using just this single representation and starts predicting semantically-aware features. APM demostrates potential applications beyond test-time-training: APM can scale up to a dataset of 2D images and yield semantic-clusterings in a single forward pass. APM also provides first empirical evidence towards validating GLOM's insight, i.e. input percept is a field. Therefore, APM helps us converge towards an implementation which can do both interpolation and perception on a shared-connectionist hardware. Our code is publicly available at this link: https://rajatmodi62.github.io/apm_project_page/.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

异步感知机 测试时训练 图像处理 语义感知 计算效率
相关文章