cs.AI updates on arXiv.org 09月26日 12:23
边缘云语义通信在实时交通监控中的应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于视觉Transformer和大型语言模型的边缘云语义通信框架,用于实时交通监控,显著降低数据传输量,提高实时性能。

arXiv:2509.21259v1 Announce Type: cross Abstract: Real-time urban traffic surveillance is vital for Intelligent Transportation Systems (ITS) to ensure road safety, optimize traffic flow, track vehicle trajectories, and prevent collisions in smart cities. Deploying edge cameras across urban environments is a standard practice for monitoring road conditions. However, integrating these with intelligent models requires a robust understanding of dynamic traffic scenarios and a responsive interface for user interaction. Although multimodal Large Language Models (LLMs) can interpret traffic images and generate informative responses, their deployment on edge devices is infeasible due to high computational demands. Therefore, LLM inference must occur on the cloud, necessitating visual data transmission from edge to cloud, a process hindered by limited bandwidth, leading to potential delays that compromise real-time performance. To address this challenge, we propose a semantic communication framework that significantly reduces transmission overhead. Our method involves detecting Regions of Interest (RoIs) using YOLOv11, cropping relevant image segments, and converting them into compact embedding vectors using a Vision Transformer (ViT). These embeddings are then transmitted to the cloud, where an image decoder reconstructs the cropped images. The reconstructed images are processed by a multimodal LLM to generate traffic condition descriptions. This approach achieves a 99.9% reduction in data transmission size while maintaining an LLM response accuracy of 89% for reconstructed cropped images, compared to 93% accuracy with original cropped images. Our results demonstrate the efficiency and practicality of ViT and LLM-assisted edge-cloud semantic communication for real-time traffic surveillance.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

边缘云 语义通信 实时交通监控 视觉Transformer 大型语言模型
相关文章